Neuronal Architecture for Reactive and Adaptive Navigation of a Mobile Robot
نویسندگان
چکیده
A neural architecture that makes possible the integration of a kinematic adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro-controller is proposed for nonholonomic mobile robots. The kinematic adaptive neuro-controller is a real-time, unsupervised neural network that learns to control a nonholonomic mobile robot in a nonstationary environment, which is termed Self-Organization Direction Mapping Network (SODMN), and combines associative learning and Vector Associative Map (VAM) learning to generate transformations between spatial and velocity coordinates. The transformations are learned in an unsupervised training phase, during which the robot moves as a result of randomly selected wheel velocities. The robot learns the relationship between these velocities and the resulting incremental movements. The obstacle avoidance adaptive neuro-controller is a neural network that learns to control avoidance behaviors in a mobile robot based on a form of animal learning known as operant conditioning. Learning, which requires no supervision, takes place as the robot moves around an cluttered environment with obstacles. The neural network requires no knowledge of the geometry of the robot or of the quality, number, or configuration of the robot’s sensors. The efficacy of the proposed neural architecture is tested experimentally by a differentially driven mobile robot.
منابع مشابه
Navigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کامل